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Abstract. Over northeastern Canada, the amount of water stored in a snowpack, estimated by its snow water equivalent (SWE) 

amount, is a key variable for hydrological applications. The limited number of weather stations driving snowpack models over 

large and remote northern areas generates great uncertainty in SWE evolution. A data assimilation (DA) scheme was developed 

to improve SWE estimates by updating meteorological forcing data and snowpack states using passive microwave (PMW) 

satellite observations without using any surface-based data. In this DA experiment, a particle filter with a Sampled Importance 15 

Resampled algorithm (SIR) was applied and an inflation technique of the observation error matrix was developed to avoid 

ensemble degeneracy. The Advanced Microwave Scanning Radiometer – 2 (AMSR-2) brightness temperatures (TB) 

observations were assimilated into a chain of models composed of the Crocus multi-layer snowpack model and radiative 

transfer models. The microwave snow emission model (Dense Media Radiative Transfer – Multi-Layers (DMRT-ML)), the 

vegetation transmissivity model (ω-τopt), and atmospheric and soil radiative transfer models were calibrated to simulate the 20 

contributions from the snowpack, the vegetation and the soil, respectively, at the top of the atmosphere. DA experiments were 

performed over 12 stations where daily continuous SWE measurements were acquired during 4 winters (2012-2016). Best 

SWE estimates are obtained with the assimilation of the TBs at 11, 19 and 37 GHz in vertical polarizations. The overall SWE 

bias is reduced by 71% compared to original SWE simulations, from 23.7 kg m-2 without assimilation to 6.9 kg m-2 with the 

assimilation of the three frequencies. The overall SWE relative percentage of error (RPE) is 14.6% for sites with a fraction of 25 

forest cover below 75%, which is in the range of accuracy needed for hydrological applications. This research opens the way 

for global applications to improve SWE estimates over large and remote areas, even when vegetation contributions are up to 

50% of the PMW signal.  

 

Keywords: passive microwave, Crocus snowpack evolution model, DMRT-ML radiative transfer model, vegetation 30 

contributions, SWE retrievals, Eastern Canada, Assimilation scheme, Particle Filter 
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1 Introduction 

In Québec, Eastern Canada, snowmelt runoff has become a major economic issue and plays a considerable role in flood events 

(Perry, 2000). Good forecasting of this water supply is essential to optimizing the management of hydroelectric dams. The 

amount of water stored in a snowpack is estimated by the snow water equivalent (SWE). Accurately predicting the evolution 

of the SWE is challenging over large and remote areas due to the high spatial and temporal variability of the snowpack and to 5 

the lack of in situ data, which are time-consuming and expensive to measure. Current operational hydrological forecasting 

models used by Hydro-Québec, one of the larger energy producers in North America, rely on surface snow surveys 

measurement interpolation (Tapsoba et al., 2005). It has been shown that the highest uncertainties in hydrological forecasting 

related to snow result from a lack of accurate estimates of the amount of snow accumulated during the winter season over large 

area (Turcotte et al., 2010). To have a better knowledge of the spatial distribution of the SWE, many approaches use snowpack 10 

models to simulate the evolution of the snow cover in response to meteorological conditions (Brun et al., 1989; Jordan, 1991; 

Lehning et al., 2002). Nevertheless, the use of models is challenging due to the imperfect knowledge of meteorological forcing 

data (Raleigh et al., 2015) (because of the low number of weather stations in remote areas) and simplifications of snow physics 

used in the models (Foster et al., 2005).  

The assimilation of satellite observations is a promising approach used to reduce these uncertainties related to the lack of in 15 

situ data (Pietroniro and Leconte, 2005; Durand et al., 2009; Touré et al., 2011; De Lannoy et al., 2012; DeChant and 

Moradkhani, 2011, Kwon et al., 2017). In particular, passive microwave (PMW) satellite observations, which measure 

brightness temperatures (‘TB’), are sensitive to the volume of snow and provide information at a good temporal and spatial 

coverage (Hallikainen, 1984; Chang et al., 1996; Tedesco et al., 2004). It has been shown that the assimilation of PMW satellite 

data into snow models added valuable information in order to compensate for initialization errors and to improve SWE 20 

simulated by snow model (Sun et al., 2004). These approaches appear to be very promising to evaluate and predict water 

resources but are still under development to be further used for operational hydrological applications (Xu et al., 2014). Larue 

et al. (2017) has shown that the GlobSnow-2 SWE product (Takala et al., 2011), which assimilates both TB satellite data and 

local snow depth observations, was not accurate enough for hydrological modeling, mainly because of its dependence on in 

situ data in remote areas. 25 

The main difficulty in the assimilation of PMW satellite observations in boreal forest areas is to quantify all the contributions 

that affect the measured signal. PMW satellite observations have a low spatial resolution (~ 10 x 10 km2) and many 

contributions are measured by satellite sensors, in addition to the PMW emission from the volume of the snowpack (vegetation 

canopy, ice crust, frozen/unfrozen soil, lakes, moisture in the snow, topography, etc.) (Kelly et al., 2003; Koenig & Forster, 

2004). In boreal areas, the PMW emission from the forest canopy within a pixel can contribute up to half of the PMW signal 30 

measured by satellite sensors (Roy et al., 2012, 2016). This contribution does not only depend on the fraction of forest cover, 

but also on the biomass (liquid water content), the vegetation volume and the structure of the canopy (stem, leaf, trunk) 

(Franklin, 1987). To adjust snowpack model simulations, several studies suggest using radiative transfer models, coupled to a 
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snowpack model, to take into account the different contributions to the PMW signal at the top of the atmosphere and to directly 

assimilate PMW satellite observations (Brucker et al., 2011; Durand et al., 2011; Langlois et al., 2012; Roy et al., 2016). 

This paper aims at developing and validating the assimilation of PMW satellite observations for SWE improvements over 

Québec by adjusting meteorological forcing data and simulated snowpack states without using any surface-based observations. 

AMSR-2 satellite sensors provide the TB observations at 11, 19 and 37 GHz. The data assimilation scheme (DA) is a Sequential 5 

Importance Resampling Particle filter (referred to as PF-SIR). The PMW emission from the snowpack is computed by using 

the Crocus snowpack model (Brun et al., 1989) coupled to a microwave snow emission model, the Dense Media Radiative 

Transfer - Multi Layers model (DMRT-ML) (Picard et al., 2013). This scheme is further referred as the Crocus/DMRT-ML 

chain and has been previously calibrated over Québec (Larue et al., 2018). This implementation was first validated in Larue et 

al. (2018) by using synthetic observations. For the assimilation of satellite data, the challenge is to accurately simulate the TB 10 

measured at the top of the atmosphere (TB TOA) by including contributions other than snow (soil, vegetation and atmosphere). 

The vegetation transmissivity model (ω-τopt), the soil emission model of Wegmüller and Mätzler (1999, WM99) and the 

atmospheric emission model of Liebe (1989) are added and calibrated to simulate the PMW emission of satellite observations 

(Roy et al., 2015).  

The specific objectives of this paper are thus to: 1) calibrate the soil and the vegetation radiative transfer models coupled with 15 

the Crocus/DMRT-ML chain to simulate TB TOA over several years (2012 to 2016); and 2) evaluate the performance of the 

assimilation of PMW data in Crocus using SWE measurements obtained over twelve reference nivometric stations from 2012 

to 2016.  This paper opens the way to a functional spatialized method for improving SWE estimates over large and remote 

areas without using surface-based data. 

2 General framework 20 

2.1 Study area and evaluation database 

Figure 1 shows the region of interest located in the province of Québec, Eastern Canada area (46-56°N). This area includes 

the watershed of La Grande, in the middle north of Québec (below 56°N), the watersheds of the Outaouais and of the Mauricie 

in the central area of Québec (46-48°N, see Fig. 1), which are equipped with SWE and snow depth sensors for hydrological 

purposes. Québec is characterized by different eco-climatic conditions, mainly constituted of forested area (dense boreal forests 25 

with coniferous and deciduous), and a flat topography. 
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Figure 1. SWE measurement stations with the ‘GMON’ SWE sensors (yellow squares, see Table 1) in the province of Québec, Eastern 

Canada. The red circles are the snow depth sensors (‘SR50’) used by Hydro-Québec for hydrological purposes, overlaid on a relief 

map (from blue-low to brown-higher altitudes) and watershed contours (black lines). The LG watershed is located in the middle 

north of Québec, the Outaouais and the Mauricie watersheds are in southwestern and south-central Québec, respectively. 5 

 

To evaluate SWE simulations, SWE measurements were taken from 2012 to 2016 by twelve nivometric stations (see numbered 

stations on Fig. 1), located through a north-south gradient in Québec. This database is fully described in Larue et al. (2018). 

Table 1 describes the main station characteristics including the mean maximum SWE measured values over operating periods. 

Daily SWE measurements are derived from gamma ray SWE sensors (Campbell Scientific CS725, ‘GMON’) with an average 10 

error of +5% (Choquette et al., 2008). Two stations (Nos. 5 and 12) are located in the subarctic eco-climatic zone (53-54°N, 

James Bay area), eight in the coniferous boreal zone (46-48°N) and two (Nos. 4 and 11) in a mixed forest area in southern 

Québec (45.3°N). Sensors were calibrated by Hydro-Québec from numerous field measurement campaigns during the first 

year following their installations.   

  15 
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Table 1. Characteristics of the nivometric stations: SWE (in kg m-2) data, Latitude (Lat.), Longitude (Long.) and Elevation (El., a.s.l. 

in meters) of stations, Dist. GEM-station is the distance between the station and the center of the associated GEM grid cell, time 

period of observations, average of the maximum observed data over the studied period, data providers (HQ: Hydro-Québec, U. 

Sherb: Université de Sherbrooke, U. Laval: Université Laval). 

Sites # Lat. Long. El. 
Dist. GEM-station 

Time period Mean maximum SWE value (kg m-2) Data provider 

(km) 

1 48.3 -74.1 100 3.4 2012-2016 272 HQ 

2 48.9 -74.2 100 4.9 2012-2016 277 HQ 

3 47.9 -72.9 100 4.7 2012-2016 252 HQ 

4 46.6 -72.8 136 4.2 2012-2016 253 HQ 

5 53.7 -78.2 103 4.2 2012-2016 213 HQ 

6 46.7 -76.0 229 2.3 2012-2016 161 HQ 

7 47.0 -74.3 469 3.3 2012-2016 235 HQ 

8 46.9 -76.4 330 1.8 2012-2016 212 HQ 

9 46.9 -73.7 372 1.9 2012-2016 180 HQ 

10 47.7 -73.6 398 3.5 2012-2016 202 HQ 

11 47.3 -71.2 669 2.6 2015-2016 396 U. Laval 

12 53.4 -75.0 389 4.0 2014-2016 211 U. Sherb 

Mean    3.4 2012-2016 237  

2.2 General setup  5 

Figure 2 shows the general methodology developed to simulate and to assimilate AMSR-2 satellite observations into the 

snowpack model.  

To simulate the signal measured by satellite sensors at the top of the atmosphere (TB TOA), a chain of models was implemented 

and calibrated over Eastern Canada. The three hourly-continuous atmospheric forcing database provided by the Global 

Environmental Multiscale weather prediction model (referred to as ‘GEM’; Coté et al., 1998) was used to drive the multi-layer 10 

Crocus snowpack model (described in Sect. 3.2.1 further). Each GEM grid cell has a spatial resolution of 10 x 10 km2, which 

is on the same order as the observation scale. In this study, the Crocus model computes the evolution of the snowpack (SWE, 

snow depth, density, etc.) each day at 1 pm, in agreement with the AMSR-2 observation time (Sect. 3.1.1). The DMRT-ML 

radiative transfer model (Sect. 3.2.1), driven with Crocus outputs, was used to simulate the PMW emission from the modeled 

snowpack (referred to as ‘TBsnow’) at 11, 19 and 37 GHz, at vertical and horizontal polarizations (‘V-pol’ and ‘H-pol’, 15 

respectively). The contribution of the atmosphere was estimated by using an atmospheric model (Liebe, 1989) driven with the 

total of precipitable water integrated over 28 atmospheric layers and provided by GEM (Dolant et al., 2016) (Sect. 3.3). The 

surface emissivity for a rough soil was deduced by calibrating the soil model of Wegmüller and Mätzler (1999, WM99) and 
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the contributions of the vegetation were quantified with the (ω-τopt) radiative transfer model (Sect. 3.3). To take into account 

the variability of the canopy emissivity, the calibration of the (ω, τopt) parameters were linked to the 4-day leaf area index 

(LAI) product from MODIS data (1 x 1 km2), averaged for each AMSR-2 grid cell (10 x 10 km2) (Sect. 3.3.3). These 

calibrations of soil and vegetation parameters were performed over the summer period to avoid the bias due to the presence of 

the snowpack.  5 

The brightness temperatures (TBs) measured by AMSR-2 satellite sensors were assimilated in a data assimilation (DA) scheme 

(see Sect. 3.4). Raleigh et al. (2015) have shown that meteorological forcing data were the major sources of errors in snow 

model simulations. Hence, we assume here that the uncertainties of GEM meteorological forcing data are the only sources of 

errors in the TB modeling. Quantifying the modeling errors due to physical simplifications inside the model is very difficult 

due to the observation spatial scale. Further studies are needed to estimate these errors over the study area and to take it into 10 

account in the DA experiment. The observations errors were assumed to be known and the modeling errors were estimated by 

perturbing selected meteorological forcing variables. An ensemble of 150 TB simulations was obtained and the distribution of 

these ‘prior estimates’ represent the modeling error in response to GEM uncertainties. . A Particle filter with an SIR algorithm 

was used in the DA scheme to update the simulated TB TOA over the winter by adjusting meteorological forcing data and 

snowpack states (posterior estimates) when an observation was available (Fig. 2). Several configurations of the DA scheme 15 

were tested over three evaluation sites representing different environmental conditions and the best configuration of the DA 

scheme was evaluated over the 12 validation reference sites from 2012 to 2016 (Sect. 3.4). 

 

 

Figure 2. Methodological scheme describing the DA scheme in the chain of models for SWE retrievals by updating perturbed 20 
atmospheric forcing data and snowpack states (‘Ft’ and ‘xt’, respectively, see Sect. 3.4). 
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3 Materials and methods 

3.1 Database 

3.1.1 AMSR-2 observations 

AMSR-2 satellite sensors (Imaoka et al., 2010) provide PMW satellite observations on the 11 (10.7), 19 and 37 GHz channels 

at V-pol and H-pol. Images produced by AMSR-2 are freely available on the Japan Aerospace Exploration Agency (JAXA) 5 

website. This study used the Level 3 Version 2 product, which provides daily TBs normalized on a North Hemisphere polar 

stereographic projection with a spatial resolution of 10 x 10 km2 (see http://gcom-w1.jaxa.jp for the specifications of the 

projection), from 1 August 2012 to 1 July 2016. TBs from AMSR-2 are computed twice a day: at 1 pm (ascending pass) and at 

1 am (descending pass). Only the ascending pass was used in this study (about 13:00 local time) since the snowpack was 

computed once a day at 1 pm (local time). The use of the ascending pass allowed avoiding the nighttime refreeze process. To 10 

reduce observation errors due to the daytime melting process, the approach was evaluated during the dry snow period, from 

December to mid-March. This aspect is further discussed in Sect. 5.1. 

3.1.2 LAI MODIS data 

The 4-day LAI product provided by MODIS TERRA data (MOD15A3; Myneni et al., 2002) was used to characterize the 

vegetation contributions on the total emissivity (Fig. 2). The product has a spatial resolution of 1 x 1 km2 and was resampled 15 

on the AMSR-2 grid of 10 x 10 km2 by averaging all LAI data within each AMSR-2 grid cell (referred to as ‘LAIAMSR-2’). For 

each site, Table 2 describes the summer and winter average values (‘LAIsummer’ and ‘LAIwinter’) calculated using LAIAMSR-2 

from 1 July to 31 August and from 1 January to 1 March over the 2012 to 2016 time period, respectively (Roy et al., 2014).   
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are the sites selected to test the configuration of the DA scheme in Sect. 4.2. 5 

Site # LAIsummer LAIwinter fcover (%) Coniferous (%) Deciduous (%) Water (%) 

#12 1.07 0.04 24.2 77.6 14.4 4.9 

#5 1.07 0.08 31.5 66.5 25.9 7.0 

#4 2.63 0.06 47.6 8.5 70.3 1.4 

#7 3.13 0.28 59.3 49.9 45.8 4.0 

#10 2.47 0.17 61.8 67.3 30.1 2.4 

#1 2.96 0.28 63.7 41.6 55.8 2.2 

#3 3.69 0.25 65.5 44.6 52.1 3.3 

#2 1.99 0.12 66.6 79.4 16.6 3.5 

#8 4.11 0.22 72.1 15.5 80.2 4.3 

#11 2.43 0.19 74.5 52.5 46.6 0.5 

#6 2.82 0.11 81.5 18.1 75.3 6.5 

#9 3.65 0.43 84.0 60.9 36.1 2.9 

 

3.1.3 Land cover map of Canada  

The land cover map of Canada Circa 2000 (available at http://www.geobase.ca/geobase/en/data/landcover/index.html) 

(referred to as ‘LCC’) was used to extract the fraction of forest cover (‘fcover’) within each AMSR-2 grid cell. This product 

provides the percentage of coniferous, herbaceous, deciduous and water areas with a spatial resolution of 1 x 1 km2 and was 10 

resampled to generate average values within each 10 x 10 km2 AMSR-2 grid cell. Table 2 shows the fractions of forest cover 

provided by the LCC and resampled over AMSR-2 grid cells for each site. As expected, Sites 5 and 12, which are located in 

the subarctic area (Fig. 1), have a low fcover (below 32%). The other sites in boreal areas have an fcover of up to 60%.  Sites 6 

and 9 are in particularly dense forest areas, with a high fcover (up to 80%). In such dense forest areas, the signature of the 

underlying snow can be significantly attenuated during the winter period and bias the measured TB signal. To test the 15 

configuration of the DA scheme for several environmental conditions, the TB assimilations for Site 12 (fcover = 24.2%), Site 1 

(fcover= 63.7%) and Site 9 (fcover = 84.0%) were analyzed in a preliminary experiment (Sect. 4.2.1).  

Table 2. LAIsummer is the mean of the LAI provided by MODIS for the July-August time period and averaged over the AMSR-2 grid 

cell (10 x 10 km2), LAIwinter is the mean LAI for the January-March time period. fcover is the fraction of forest cover within the AMSR-

2 grid cell extracted from the land cover map Circa 2000 (Sect. 3.3). The percentages of coniferous, deciduous and water areas are 

the percentages distributed within the fcover. Sites are ranked in the increasing order of fcover. The three highlighted sites (gray cells) 
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Moreover, the presence of lakes can affect the PMW signal. Lake ice (when snow cover is absent) increases the PMW signal 

at high frequencies and, at low frequencies, the contribution of water bodies acts as a reflector and the emissivity remains low 

(De Sève et al., 1999). With snow cover on lakes, the different snow states on the lakes compared to snow cover under forest 

also modified the emitted signal (see Derksen et al. 2012, 2014). Nevertheless, we made the hypothesis that these impacts were 

negligible over our studied sites, which have lake water fractions under 7% within their AMSR-2 grid cells (Table 2) (masks 5 

are generally applied for water fractions of up to 20%, Takala et al., 2011). 

3.2 Simulation of the PMW emission from the snowpack 

3.2.1 Coupling of Crocus and DMRT-ML 

The chain of models developed to simulate TBsnow is identical to that of Larue et al. (2018), so only a brief description of the 

approach is detailed here (see Fig. 2).  10 

To generate a three hourly-continuous meteorological forcing database for running Crocus, successive GEM forecasts were 

taken from the +09 forecast hour to the +18 forecast hour provided at the 00 and 12 UTC analysis time of each day. The Crocus 

snowpack evolution model (Brun et al., 1989, 1992; Vionnet et al., 2012) is coupled with the ISBA land surface model within 

the SURFEX interface (Surface Externalisée, in French) (Decharme et al., 2011; Masson., 2013). SURFEX/ISBA/Crocus 

(hereafter referred to as “Crocus”) computes the evolution of the physical properties of the snowpack and the underlying 15 

ground (soil). In particular, Crocus represents the detailed snow microstructure evolution in time through the formulations in 

Carmagnola et al. (2014). The number of snow layers is dynamic and evolved according to physical properties updated at each 

time step. The maximum number of simulated snow layers was fixed at 15 in this study, as a compromise between accuracy 

and computing time (not shown). Configuration and initialization of the Crocus snowpack model are the same as described in 

Larue et al. (2018).  20 

TB snow was computed by driving the radiative transfer model DMRT-ML with Crocus outputs. The DMRT-ML model is well-

detailed in the literature (Tsang et al., 1992; Tsang and Kong, 2001; Picard et al., 2013), so only the calibration is described 

here. Snow grain size, and more generally snow microstructure, are factors that most affect the accuracy of simulated PMW 

emission from a snowpack as they determine the strength of scattering mechanisms in the snowpack at the high frequencies 

used (Roy et al., 2013; Leppänen et al., 2015; Sandells et al., 2017, Larue et al., 2018). In DMRT-ML, snow grains are 25 

represented as spheres of ice with variable interactions between them. The potential formation of clusters of grains, which 

increases the effective snow grain size, is not taken into account, generating uncertainties (Picard et al., 2013). Several studies 

have shown that DMRT-ML needed an effective scaling factor to represent the stickiness between snow grains and to correct 

the snow microstructure representation (Brucker et al., 2011; Roy et al., 2013; Royer et al., 2017).  Larue et al. (2018) have 

shown that a mean snow stickiness parameter (τsnow) of 0.17 was optimal to simulate TBsnow over boreal snow in Québec (RMSE 30 

of 27 K) when DMRT-ML is driven by Crocus snow profiles. This constant τsnow value was used in the implemented chain of 
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models. Nevertheless, this effective parameter could change with snow type (Royer et al., 2017; Larue et al., 2018). The use 

of the τsnow parameter as a free variable in the DA scheme is discussed in Sect. 5.2. 

3.1.2 Ice lens detection algorithm 

Since ice lenses (‘IL’) within a snowpack significantly reduce TB mainly at H-pol (Montpetit et al., 2013; Roy et al., 2016), 

ice layers must be detected and added in the simulated Crocus snow profiles to improve TBsnow simulations. TB in H-pol are 5 

much more attenuated by the presence of an IL than TB in V-pol, since the coefficient of reflectivity is stronger in H-pol 

(Montpetit et al., 2013). Therefore, by following the daily evolution of the PMW emission from the snowpack with AMSR-2 

observations, the formation of an IL can be detected by using a threshold on the polarization ratio PR defined by Cavalieri et 

al. (1984) for a given frequency (ν), 

𝑃𝑅(𝜈) =  
𝑇𝐵(𝜈,𝑉−𝑝𝑜𝑙)−𝑇𝐵(𝜈,𝐻−𝑝𝑜𝑙) 

𝑇𝐵(𝜈,𝑉−𝑝𝑜𝑙)+𝑇𝐵(𝜈,𝐻−𝑝𝑜𝑙)
          (1). 10 

In this study, an IL was inserted on the top of the simulated snowpack if the AMSR-2 PR(11) was above 0.06 (Roy, 2014). To 

integrate the IL in the snow profile, a 1-cm layer with a density of 900 kg m-3 and snow grain radius set to zero was first added 

at the surface of the snowpack when it was detected (Roy et al., 2016). The difficulty knowing how to evolve this IL in the 

snowpack. The Crocus snowpack model has not yet been adapted to integrate the formation of ILs and evolve them in a 

coherent way (Quéno et al., 2016). Nevertheless, it was shown in Larue et al. (2018) (from field measurements) that an IL of 15 

1 cm located 4 cm from the surface in the simulated Crocus snow profile minimized the bias of DMRT-ML simulations due 

to the presence of an IL in the snowpack (regardless of its real location in the snow profile). Hence, as soon as a snowfall is 

detected with GEM precipitation data, the IL firstly added on the top of the surface was positioned 4 cm from the surface in 

the simulated snow profile. The maximum number of detected IL was fixed at two. In this case, the first detected IL was 

positioned at 8 cm from the surface and the second at 4 cm after a snowfall was detected. During winter 2014-2015, one IL 20 

was detected at sites 1 and 12 (22 December 2014 and 15 December 2014). At site 9, two ILs were detected: one on 10 

December 2014 and another on 1 January 2015.  

3.3 Simulation of the PMW emission at the top of the atmosphere 

The PMW brightness temperature (TB) emitted by a AMSR-2 grid cell can be written as (2), 

𝑇𝐵 = [𝑓season. 𝑇𝐵 𝑓𝑜𝑟𝑒𝑠𝑡 + (1 − 𝑓season)𝑇𝐵 𝑜𝑝𝑒𝑛]        (2) 25 

where fseason is the seasonal (winter or summer) fraction of forest cover in the AMSR-2 grid cell, TB forest is the PMW emission 

with vegetation contributions and TB open is the PMW emission without vegetation contributions. The fcover values provided by 

the Circa 2000 map are constants whereas these fractions of forest evolve according to the season. To take into account the 

temporal evolution of the forest cover for the winter and summer periods (defined as the time period with and without snow, 

respectively) and to estimate the fseason used in Eq. (2), fcover was linked respectively to LAIwinter and to LAIsummer by comparing 30 
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the fcover map to the two resampled maps (both resampled on the AMSR-2 projection) throughout Québec area (not shown). 

The seasonal fraction of fcover are related to seasonal LAIs with the Eq. (3) and (4) for summer and winter respectively, 

 𝑓𝑠𝑢𝑚𝑚𝑒𝑟 = 0.9 ∗ (1 − exp(−2.7 ∗ 𝐿𝐴𝐼𝑠𝑢𝑚𝑚𝑒𝑟))3.2         (3) 

 𝑓𝑤𝑖𝑛𝑡𝑒𝑟 = 0.9 ∗ (1 − exp(−16.0 ∗ 𝐿𝐴𝐼𝑤𝑖𝑛𝑡𝑒𝑟))0.3                                 (4) 

The linear correlation between the fsummer values estimated from the LCC and the fsummer values fitted to LAI data with the Eq. 5 

(3) has a coefficient correlation r equal to 0.94 and a p-value below 0.01. For the LCC fwinter values and the fwinter values fitted 

to the LAI data (see Eq. (4)), the coefficient correlation r is equal to 0.95 and the p-value is below 0.01.  

3.3.1 Vegetation contributions 

The PMW emission from the vegetation varies according to the forest characteristics, such as the biomass, the structure of the 

vegetation or the liquid water content of the canopy. In this study, the vegetation contribution was modeled according to the 10 

simplified radiative transfer model (ω-τopt) (Mo et al., 1982), where the parameters are estimated by fitting the simulated TBs 

with observations (Grant et al., 2008, Roy et al., 2012). The ω is the simple scattering factor of the albedo. Given the incidence 

angle θ = 55° of AMSR-2 satellite sensors, the optical thickness of the vegetation τopt is a function of the forest transmissivity 

(γ) such that γ = exp(- τopt
 / cosθ). The forest transmissivity, which varies according to the frequency (ν) used and is further 

called γν. At the satellite sensor, the expression of TB TOA in boreal areas was described by the Eq. (2), which can be detailed 15 

with the Eq. (5) and (6) (see Roy et al., 2012), 

𝑇𝐵 𝑓𝑜𝑟𝑒𝑠𝑡 = [𝛾𝜈 . 𝑒 𝑠𝑢𝑟𝑓 . 𝑇𝑠𝑢𝑟𝑓 + (1 − 𝜔). (1 − 𝛾𝑓). 𝑇 𝑣𝑒𝑔 + 𝛾𝜈. (1 − 𝑒 𝑠𝑢𝑟𝑓). (1 − 𝜔). (1 − 𝛾𝜈). 𝑇𝑣𝑒𝑔 + (1 −

𝑒 𝑠𝑢𝑟𝑓). 𝛾𝜈
2

. 𝑇𝐵 𝑎𝑡𝑚↓ + (1 − 𝛾𝜈). 𝜔. 𝑇𝐵 𝑎𝑡𝑚↓] . 𝛾𝑎𝑡𝑚 + 𝑇𝐵 𝑎𝑡𝑚↑                          (5) 

𝑇𝐵 𝑜𝑝𝑒𝑛 = [𝑒 𝑠𝑢𝑟𝑓 . 𝑇𝑠𝑢𝑟𝑓 + (1 − 𝑒 𝑠𝑢𝑟𝑓). 𝑇𝐵 𝑎𝑡𝑚↓]. 𝛾𝑎𝑡𝑚 + 𝑇𝐵 𝑎𝑡𝑚↑                     (6) 

where Tsurf is the surface temperature, esurf is the surface emissivity under the canopy (with or without snow) for a given 20 

frequency, Tveg is the temperature of the vegetation (taken as equal to the air temperature at 2 meters, provided by GEM). 

TBatm↓ and TBatm↑ are respectively the descending and ascending atmospheric contributions, and γatm is the transmittance of the 

atmosphere. These atmospheric contributions were modeled using the Liebe (1989) model implemented in the Helsinki 

University of Technology (HUT) snow emission model (Pulliainen et al., 1999). The model considers radiative transfer through 

the atmospheric layers and provides values TBatm↓, γatm and TBatm↑ at the satellite sensor level (Liebe, 1989) according to the 25 

precipitable water integrated for all atmospheric layers provided by GEM (Dolant et al., 2016). Thus, for snow free conditions, 

only forest (ω, γν) and soil (esurf) parameters are unknown and need to be adjusted for each site by fitting the outputs of the 

model according to the observations.  
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3.3.2 Soil contributions 

To deduce the surface emissivity for a rough soil (esurf,p for a given polarization p), the soil model of Wegmüller and Mätzler 

(1999, WM99) was used to calculate the surface reflectivity for a rough soil throughout the year under the canopy (rsurf,p for a 

given polarization p), with or without snow by using the Eq. (7) and (8), 

𝑟𝑠𝑢𝑟𝑓,𝐻 = 1 − 𝑒𝑠𝑢𝑟𝑓,𝐻 = Г𝐹𝑟𝑒𝑠𝑛𝑒𝑙,𝐻 . exp (−𝜎𝑠
√0.1.𝑐𝑜𝑠𝜃)        (7) 5 

𝑟𝑠𝑢𝑟𝑓,𝑉 = 1 − 𝑒𝑠𝑢𝑟𝑓,𝑉 = 𝑟𝐻 . cosθ𝛽          (8) 

rsurf,p mainly depends on the surface roughness and Fresnel coefficients (ГFresnel, H). In the Eq. (7), the simplified parameter 

σs=k.σ was used, where k is the wave number and σ the standard deviation of the surface height (in meters). When the soil is 

frozen, parameters derived from Montpetit et al. (2017) were used (see Sect. 4.1). When the soil is not frozen, ГFresnel,H was 

estimated from the dielectric constant calculated with the Dobson (1985) equations according to the soil moisture and the soil 10 

temperature. These variables are daily computed with the Crocus model, coupled to the ISBA land surface model. The soil 

reflectivity in vertical polarization also depends on a parameter β (Montpetit, 2015), which describes the polarization of the 

signal and varies according to the frequency used (referred to as βν hereafter). Hence, the soil parameter esurf is linked to the 

couple (σs, βν) and mainly evolved according to soil moisture and soil temperature.  

3.3.3 Inversions of vegetation and soil parameters 15 

The inversion of forest (ω, γν) and soil (σs, βν) parameters was carried out in summer to avoid the bias due to the presence of a 

snowpack. Forest parameters (ω, γν) depend on the forest characteristics, such as the biomass and the structure of the canopy 

for each site. To take into account the temporal variations of these caracteristics, the forest parameters were linked to the LAI. 

It also allowed a realistic continuity of the (ω, γν) calibration for the winter period. Using the vegetation water content equation 

defined by Pampaloni and Paloscia (1986), the parameter γν is related to the 4-day LAI for a given frequency ν with the relation 20 

(9),  

𝛾𝜈 = 𝑒−𝑏.𝑘𝑎.(exp(−
𝐿𝐴𝐼

3
)−1)/𝑐𝑜𝑠𝜃

               (9) 

where a and b are two constants to calibrate. To reduce the number of unknown variables, the Eq. (9) has been simplified to 

use only one constant ην such as ην  = 𝑒−𝑏.𝑘𝑎
.  

The vegetation and soil parameters were inverted by minimizing the difference between simulated TB TOA compared to TBs 25 

measured with AMSR-2 sensors at 11, 19 and 37 GHz in vertical polarizations. The same approach was developed in Roy et 

al. (2014) and adapted for PMW emission in boreal areas. It has been shown that the soil and vegetation contributions are 

strongly linked and can not be decoupled. Moreover, the two parameters (ω, σs) have been shown to be constant in frequency 

in previous studies. Pellarin et al. (2006) have shown a ω = 0.06 for coniferous forest at 6.6 and 11 GHz and Meissner and 

Wentz (2010) have shown that the increase of ω from 6.6 to 19 GHz was weak. Therefore, for each site and for each (ω, σs) 30 

value couple (considered constant in frequency), optimal (ην, βν) values were optimized for each frequency (at 11, 19 and 37 

GHz) in V-pol. Optimizations of (ην, βν) parameters have been tested in H-pol and V-pol and parameters were assumed to be 
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constants in polarizations (not shown). These (ην, βν) optimizations were carried out for each couple (ω, σs) values, which 

varied iteratively with a step of 0.01 (from 0.02 to 0.16) and 0.05 (from 0.01 to 1.1), respectively (Roy et al., 2014).  

 3.4 Data assimilation setup  

As a first step, the previous study of Larue et al. (2018) tested the feasibility of the DA scheme in a controlled environment by 

using synthetic TBsnow observations, obtained by running the Crocus/DMRT-ML chain (Fig. 2) with one perturbed 5 

meteorological forcing data. The results showed an SWE ensemble RMSE reduced by 82% with the multi-variate assimilation 

of differences between TBs at 19-37 GHz and 19-11 GHz in vertical polarizations, compared to SWE ensemble RMSE without 

assimilation (‘open loop runs’). In the present study, the same DA setup as described in Larue et al. (2018) was implemented 

except that real satellite observations were used. The observation errors are difficult to quantify due to the difference between 

model and observation representativeness. A poor parameterization of observation error statistics quickly leads to ensemble 10 

degeneracy, i.e. an ensemble collapsing to a unique particle. To avoid ensemble degeneracy, an inflation technique of the 

covariance matrix of observation errors (R matrix) is developed and implemented.   

3.4.1 DA framework 

The DA scheme is a particle filter with a Sequential Importance Resampling algorithm (hereafter referred to as ‘PF-SIR’) that 

is well-documented in Van Leeuwen (2009, 2014) and Gordon et al. (1993) and relatively easy to implement with a snowpack 15 

model (Dechant & Moradkhani, 2011; De Lannoy et al., 2012; Charrois et al., 2016; Larue et al., 2018). The PF-SIR represents 

the probability density function (pdf) of the model state with an ensemble of states (called particles), which is updated when 

an observation is available. An ensemble approach is preferred because of the non-linearity of the system. Moreover, the 

particle filter approach can cope with the variable number of state variables resulting from the changing number of snow layers 

in Crocus. The created ensemble represents uncertainty in SWE and in TB simulations due to the uncertainties of meteorological 20 

inputs (Fig. 2).  

The daily ensemble of meteorological forcing data was created by perturbing selected GEM data (air temperature, wind speed, 

precipitation and short and long wave radiations) according to their respective uncertainties estimated in Larue et al. (2018). 

Meteorological forcing perturbations are evolved in time following a first-order autoregressive process to simulate their 

realistic temporal variations (Charrois et al., 2016). Precipitation, wind speed and short-wave radiations (‘SWdown’) were 25 

perturbed by a multiplicative factor centered at 1. Perturbation boundaries were fixed at -0.9 and 0.9. The air temperature was 

perturbed by an additive factor, with boundaries fixed at -3 K and +3 K. Perturbed long wave radiations (‘LWdown’) were 

estimated according to perturbed Tair from a linear regression estimated in Larue et al. (2018). In order to maintain physical 

consistency in the simulations, SWdown was limited to 200 W.m-2 when there was precipitation (presence of clouds) (Charrois 

et al., 2016). The ensemble was composed of 150 members, which was found to be adequate in Larue et al. (2018). Note that 30 

this ensemble method is stochastic and was chosen to be easily implemented and tested for each site, which represent 
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independent grid-cells. Further studies would be necessary to validate the spatialization of this approach by initializing the 

chain of models with coherent ensemble forecasts. 

The snowpack prior state 𝑥𝑡  at time t is computed according to the updated past state of snowpack simulations at time t-1 

(posterior state 𝑥𝑡−1) and to the prior perturbed meteorological forcing data 𝐹𝑡 from time t-1 to t (see Fig. 2). The predicted 

observation is computed with 5 

𝑦𝑡
𝑖 = ℎ(𝑥𝑡

𝑖)            (10) 

where yt
i is TB TOA predicted from particle i (i=0..N, with N the ensemble size). The observation operator h is the τsnow-calibrated 

DMRT-ML model and the calibrated radiative transfer models estimating soil, atmosphere and vegetation contributions. In the 

analysis step, the new posterior distribution is updated by weighting each particle xt
i
 according to the distance between yt

i and 

the AMSR-2 TB observation. With the SIR algorithm, the pdf is resampled by duplicating particles with large weights (i.e., 10 

close to observations) and taking off those with negligible weights (far from observations). With the Arakawa procedure used 

here for ensemble resampling (Arakawa, 1996; same as Charrois et al, 2016), a particle is definitely selected if its weight is 

larger or equal to the inverse of the ensemble size (N=150). The observation error standard deviation associated with AMSR-

2 observations was assumed to be 2 K (Durand & Margulis, 2006, 2007). 

Ensemble resampling considerably reduces the risk of degeneracy, but does not eliminate it. Degeneracy starts when only a 15 

few particles have significant weights. These particles are selected many times, leading to a loss of diversity of the posterior 

ensemble. After several assimilation steps, the ensemble quickly reduces to a single particle. Ensemble degeneracy can be 

detected when the number of selected particles (those with high weights) is below an effective limit number Nkeep, here fixed 

at 25 as a compromise between the quality of the DA scheme and the size of the ensemble (not shown). Hence, to avoid a 

degeneracy problem, the weight of the 25-th selected particle (wekeep) must always be larger or equal to the inverse of the 20 

ensemble size (N=150). In this study, we developed a new technique to ensure this, which consists in the online adjustment of 

the observation error covariance matrix such that wekeep is at least equal to 1/N. The rationale here is that, because the weights 

are nonlinear functions of the observation error covariance matrix, a larger matrix tends to flatten the distribution of weights 

and favours the selection of more particles. This adjustment is performed with an inflation of the initial matrix, and the detailed 

algorithm is provided in Appendix A. Ensemble degeneracy is often caused by extreme precipitation events resulting in very 25 

high TB values difficult to represent with the model. The online adjustment technique mitigates the consequences of this model 

deficiency on the snow simulations over the rest of the season. The other side of the coin is that a “good” observation can be 

ruled out if the model is not able to reproduce it, thereby reducing the accuracy of the snowpack estimation. 

3.4.2 Experimental setup 

In a first step, three DA experiments were tested over sites 1, 9 and 12 for winter 2014-2015 (Sect. 3.1.3) to analyze the 30 

sensitivity of the DA scheme for SWE improvements according to the assimilated frequencies: a) assimilation of the TB 

differences between 19 and 37 GHz and between 19 and 11 GHz, in V-pol (referred to as ‘ΔTB,19-37’ and ‘ΔTB,19-11’, 

respectively); b) assimilation of ΔTB19-37 only; c) assimilation of the three TBs at 11, 19 and 37 GHz in V-pol. While the DA of 
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TBs at 11, 19 and 37 GHz in V-pol should give the best results since this combination of frequencies imposes more constraints, 

the risk of encountering a degeneracy problem is higher. The combination of both ΔTB,19-37 and ΔTB,19-11 is commonly used in 

the literature for SWE retrievals (Chang et al., 1987; Tedesco et al., 2004; Tedesco & Nervekar, 2010). The assimilation of the 

ΔTB,19-37 only was also studied to analyze the sensitivity of TB assimilation for deep snowpack when TB,37 saturates for a SWE 

up to about 150 mm (Mätzler et al., 1994) and to evaluate the supply of information from 11 GHz in the assimilation of both  5 

ΔTB,19-37 and ΔTB,11-19 for SWE improvements. Here we used V-pol TB because H-pol TB is more sensitive to the stratigraphy 

of the snowpack and to the presence of ILs (Mätzler, 1987).  

DA experiments were applied between 1 November and 1 May. To avoid wet snow conditions, the DA is not performed when 

a liquid water content is observed in the modeled snowpack. This variable is estimated from Crocus, driven with original 

meteorological forcing data. SWE were evaluated over both the dry snow period (from 1 December to 15 March) and the 10 

whole winter (when a snowpack is detected).  

To quantify the performance of the DA scheme, the daily RMSEs of ensembles of simulated SWE obtained with and without 

the DA scheme were compared by using the Eq. (11), 

𝑅𝑀𝑆𝐸𝑡 =  √(
1

𝑁
∑ (𝑋𝑠𝑖𝑚 𝑖,𝑡 − 𝑋𝑂𝑏𝑠 𝑡)

2𝑁
𝑖=1 )           (11) 

where N is the ensemble size, Xsim i,t is the simulated variable from the member i at time t, and XObs t is the diagnostic variable 15 

at time t obtained from AMSR-2 observations.  

The best configuration of the DA scheme was then applied over the 12 sites, from 2012 to 2016. To estimate the accuracy for 

hydrological applications, the median of the SWE ensemble obtained with DA (SWEDA) was compared to SWE measurements. 

The median was used instead of the mean to reduce the potential impact of extreme perturbations. The evaluation of the DA 

scheme is performed by comparing SWEDA RMSE and the relative percentage of error (‘RPE’) values to the original SWE 20 

simulations (SWECrocus), obtained by driving Crocus with original meteorological forcing data. The relative percentage of error 

(‘RPE’) is defined as, 

𝑅𝑃𝐸 = 100.
|𝐵𝑖𝑎𝑠|

𝑀𝐸𝐴𝑁𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
            (12). 

The accuracy needed for hydrological applications is a SWE RPE lower than 15% (Vachon, 2009; Larue et al., 2017), which 

is the same performance objective as the CoreH2O project and the GlobSnow2 product (Rott et al., 2010; Luojus et al., 2014).  25 

This error threshold corresponds to a RMSE of about 45 kg m-2 for a measured average Québec snowpack about 300 kg m-2 

of SWE. The ability to accurately estimate the annual SWE maximum (SWEmax) was also studied since it is one of the most 

important variables for hydrological applications. It allows the amount of water stored in the snowpack before the spring snow 

melt to be described. To avoid extreme values, the SWEmax is estimated as the average of the SWE for a time period of +- 2 

days around the detected SWEmax. 30 

Comparing punctual data against model cells involves uncertainty due to spatial variations of the snowpack and land cover. 

This is a well-known problem for model validation studies and we assume here that the large number of sites and the random 

spatial localization of measurements within the pixels provide a useful assessment of simulations. Only snowpacks with a 
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SWE higher than 48 kg m-2 (about 20 cm of snow depth), derived from measurements, were used for model evaluation to 

attenuate problems of shallow snow cover variability or heterogeneity. 

4 Results  

 4.1 Simulations of TB TOA 

For each iteration of couple value (ω, σs) (constant in frequency, Sect. 3.3.3), a couple of (ην, βν) values was calibrated at each 5 

frequency (11, 19 and 37 GHz) in V-pol according to the daily LAI. TB TOA are simulated from 2012 to 2016 and optimizations 

are performed over the summer period (see Sect. 3.3) for each site independently. The inversion is not very sensitive to σs. (not 

shown) and Figure 3 shows the optimal overall TB TOA RMSE between simulated and measured TB TOA for the 12 sites and for 

the summer period according to the ω values. Over the summer period, a ω value at 0.07 and a σs value at 0.2 cm give best 

result for TB TOA simulations, with a minimum overall RMSE equal to 9.0 K. For this optimal (ω, σs) couple, the mean optimal 10 

values of the ην and βν factors are detailed in Table 3 (for unfrozen ground). If the soil is frozen, the soil contribution is constant 

and the (σs, βν) soil parameters are given in Table 3. They were previously optimized over the same study area by Montpetit 

et al. (2017). A value of ω=0.07 is coherent with the literature for dense boreal forest areas (Pellarin et al., 2006; Meissner and 

Wentz, 2010; Roy et al., 2012) 

 15 

Figure 3. Overall TB RMSE (at 11, 19 and 37 GHz, for the 12 sites and for the summer period) between the simulated and measured 

TB TOA as a function of the values of ω.  A σs value at 0.2 cm gives the best results but TB RMSE is not very sensitive to this variable. 

The parameters βν and ην were optimized for each (ω, σs) couple according to the frequency used.  

 
  20 
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soils derived from the Dobson's equations (1985). Annual and seasonal TB TOA RMSE estimated for the summer and the winter 5 
period (RMSEsummer and RMSEwinter) are calculated from 2012 to 2016 with the calibrated parameters. 

Frequency 

(GHz) 

 

Frozen soil 
Unfrozen 

soil 
Cal. 

ω 

Cal. 

ην 

Mean 

RMSEsummer 

(K) 

Mean 

RMSEwinter 

(K) 

Mean 

annual 

RMSE 

(K) 
εeff 

σs 

(cm) 
βν 

Cal. 

σs 

(cm) 

Cal. 

βν 

11 
3.18-

0.006134i 

0.19 

1.08 

0.2 

0.69 

0.07 

0.01 8.6 7.6 8.5 

19 
3.42-

0.00508i 
0.72 0.60 0.05 8.7 9.1 9.1 

37 
4.47-

0.32643i 
0.42 0.67 0.23 10.1 35.2 26.8 

 

Without optimizations, the annual mean RMSE of the original TBs simulations varies from 12.9-47.1 K for the three frequencies 

(not shown). With optimizations, for the summer period, the three frequencies have a similar TB RMSEsummer (8.6-10.1 K, 

Table 3) while over the winter period the TB TOA RMSEwinter significantly increases at 37 GHz due to the presence of the 10 

snowpack (7.6-35.2 K). The calibrations make it possible to reduce the TB,37 RMSE by 12 K. Figures 4a, 4b and 4c show the 

pluri-annual TB TOA variations for Sites 12, 1 and 9, respectively, from 2012 to 2016 and at 37 GHz. At this frequency, the 

simulated TB TOA is strongly underestimated when a snowpack is observed. This is likely due to an overestimation of the SWE 

or snow grain sizes since TB, 37 are attenuated in the snowpack as snow grains act as diffusers while the TB, 19 and TB, 11 are 

relatively not affected by snow grains (RMSEsummer similar to RMSEwinter at 11 and 19 GHz, Table 2). Simulated SWE were 15 

overestimated by 16% and 20.2% compared to SWE measurements for Sites 1 and 9, respectively, for the winter 2014-2015. 

The objective of TB assimilation is to reduce these overestimations. Note that the SWE simulated at Site 12 is underestimated 

by 19%. The underestimation of TB, 37 can also be caused by an underestimation of the vegetation contributions. This aspect is 

further discussed in Sect. 5.2. 

By integrating ILs within the snowpack when the PR19 is above 0.015, the overall TB TOA RMSE at 37 GHz is reduced during 20 

the winter period and goes from 38.5 K to 35.2 K.  

In winter, the overall TB TOA RMSE (all frequencies) is equal to 18.0 K from 2012 to 2016, similar to the overall RMSE 

estimated for the τsnow-calibrated DMRT-ML driven by in situ measurements in an open area and equal to 19.9 K compared to 

surface-based radiometric measurements in Québec (Larue et al., 2018). 

 Table 3. Effective parameters calibrated for the 12 studied sites to quantify soil contributions esurf (calibrated surface roughness 

‘cal. σs’ and calibrated polarization ratio ‘cal. βν’) and vegetation contributions (controlled by the calibrated (ω, ην) parameters ‘cal. 

ω’ and ‘cal. ην’ according to the daily LAI) measured at the top of the atmosphere. The parameterization of frozen ground was 

estimated by Montpetit et al. (2017). εeff is the effective dielectric constant estimated with the permittivity of frozen and unfrozen 
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Figure 4. Pluri-annual variations of simulated TB TOA (red dotted lines) and measured TB TOA (black full lines) from 2012 to 2016 at 

37 GHz in vertical polarization: (a) Site 12 (fcover of 24%); (b) Site 1 (fcover of 64%); (c) Site 9 (fcover of 84%). 

 4.2 Results of AMSR-2 data assimilation (DA)  

4.2.1 Data assimilation experiments 5 

Three DA scenarios were first tested on three sites (Site 12 (fcover of 24.2%), Site 1 (fcover of 63.7%) and Site 9 (fcover of 84.0%).) 

to determine the optimal data to assimilate: 1) both the ΔTB,19-37 and ΔTB,19-11; 2) ΔTB19-37 only; 3) and the three TBs at 11, 19 

and 37 GHz in V-pol. Figure 5 shows the daily variations of the SWE ensemble RMSE (see Eq.  (11)) obtained without and 

with DA (prior and posterior estimates) according to the combination of frequencies used as observation. Table 4 summarizes 

these averaged SWE ensemble RMSEs according to the studied period (dry snow period and whole winter) for tested site.  10 

Over these three sites and for the dry snow period, the DA reduced the overall SWE RMSE by 38.0%, 49.1% and 56.8% with 

scenarios 1, 2 and 3, respectively, compared to the SWE RMSE obtained with prior estimates (Table 4). The assimilation of 

the three frequencies helps to improve SWE simulations, giving the lowest RMSE compared to other scenarios. The same 

trend is observed over the whole winter and the assimilation of the three frequencies reduces the overall SWE ensemble RMSE 

by 45.6% (SWE ensemble RMSE of 22.7 kg m-2) compared to the SWE ensemble RMSE of prior estimates (SWE ensemble 15 

RMSE of 41.7 kg m-2).  

In our previous work (Larue et al., 2018), we have shown a reduction of 82% of the SWE ensemble RMSE by assimilating 

both the ΔTB,19-37 and ΔTB,19-11 and using synthetic observation data over a dry snow period. The differences between results 
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using synthetic and real data in DA experiments are likely due to two aspects. Firstly, the snow model does not resolve the 

intra-pixel surface variability. We assumed homogeneous snow cover within the pixel in open areas, thus with no interactions 

between snow and vegetation. Even if we compare simulations with surface-based measurements in open areas, this could 

introduce large uncertainties (Roy et al., 2016). Secondly, the land cover variability and heterogeneity within each pixel also 

induce uncertainties in the mean TB simulation over a pixel (TB weighted by the fraction of forest cover, see Eq. (2)). 5 

 

 

Figure 5. Variations of the SWE ensemble RMSE (Eq. (11)) obtained with and without DA for the dry snow period (from 1 December 

to 15 Marsh). The red line is the SWE ensemble RMSE obtained without DA (open loop runs), the blue line is the RMSE obtained 

with the DA of ΔTBv,19-37 only, the green dashed line the RMSE with the DA of ΔTBv, 19-37 and ΔTBv,19-11, and the black dotted line the 10 
RMSE with the DA of the three TBs. Experiements are performed for (a) Site 12; (b) Site 1; (c) Site 9, over the winter 2014-2015. 
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Tested sites #1 #12 #9 Overall 

RMSEdry snow (kg m-2) Without assimilation 50.7 28.6 47.8 42.4 

DA of ΔTB, 19-37 24.4 19.2 34.1 25.9 

DA of ΔTB, 19-37 and ΔTB, 11-19 16.4 25.1 23.3 21.6 

DA of TBs at 11, 19 and 37 GHz (V-pol) 11.8 21.5 21.7 18.3 

RMSEannual (kg m-2) Without assimilation 47.2 28.9 48.9 41.7 

DA of ΔTB, 19-37 24.2 23.3 42.4 30.0 

DA of ΔTB, 19-37 and ΔTB, 11-19 18.5 28.2 31.4 26.0 

DA of TBs at 11, 19 and 37 GHz (V-pol) 15.5 23.3 29.3 22.7 

 

Figure 6 illustrates the comparison between SWE measurements, the original SWE Crocus simulations (SWECrocus) and the 5 

median of the SWE ensemble obtained with the DA of the three frequencies (referred to as ‘SWEDA’). The yellow envelope 

illustrates the SWE ensemble obtained without DA (prior estimates) and shows a large ensemble spread in response to 

meteorological forcing uncertainties. The gray envelope is the resampled SWE ensemble (posterior estimates). SWE 

simulations are very sensitive to the uncertainties of meteorological forcing data at the beginning of the winter season. If an 

event (melting or precipitation) is missed, a constant bias on SWE estimates is kept throughout the winter. For Sites 1 and 9, 10 

the DA scheme allows the correction of these uncertainties at the beginning of the season. The SWE ensemble RMSE of 

posterior estimates are reduced by about 30 kg m-2 at the beginning of the season, compared to the RMSE of prior estimates 

(Fig. 5). For these two sites, the SWE ensemble RMSE obtained with the DA of the ΔTB19-37 only increases as the snowpack 

becomes deeper, especially from mid-January when the snowpack becomes deeper than 100 kg m-2 (Fig. 6). The PMW signal 

from the snowpack at 37 GHz saturates for such deep snowpack (Mätzler et al., 1982; Mätzler, 1994; De Sève et al., 1997; 15 

2007) and the assimilation of ΔTBv,19-37 only does not give enough information to significantly improve SWE retrievals. For 

Site 9, posterior estimates are deteriorated at the end of the season compared to prior estimates with the DA of ΔTBv,19-37. By 

adding ΔTBv,19-11, this effect is reduced but stays sensitive to the depth of the snowpack (Fig. 5).  

Note that the gray envelope does not always include the observations (Fig. 6a and 6c). This could be due to an under-estimation 

of the R matrix. In the developed approach, the inflation technique of the R matrix is limited by a threshold on the α factor 20 

fixed at 5 since the simulations are limited by the simplifications of physical parameters in the models and we may introduce 

a bias if we force them to follow the observation by perturbing meteorological forcings only. Further work is needed to quantify 

the model errors in order to consider it in the DA scheme and to improve the representativeness of the simulations. To represent 

the uncertainties about the physical processes simulated with the Crocus snow model, a new system based on snow 

Table 4. Averaged SWE ensemble RMSE (see Eq.  (11)) obtained with and without DA, according to the data assimilated (see Sect. 

4.2.1) for each tested site. RMSEdry-snow is the SWE ensemble RMSE obtained from 1 December to 15 Marsh. RMSEannual is estimated 

over the whole winter (when snowpack is detected). 
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model ensembles could be an alternative. Such an approach was recently developed by implementing different configurations 

estimating the physical parameters of the Crocus snow model (ESCROC, Lafaysse et al., 2017). 

 

 

Figure 6. Evolution of SWE measurements (black points) and SWE simulations. The SWECrocus is the red line and the SWEDA is the 5 
gray dotted line. The yellow envelope is the spread of the SWE ensemble obtained with open loop runs (prior estimates). The gray 

envelope is the spread of the SWE ensemble obtained with the assimilation of the three frequencies (posterior estimates). Both 

spreads are delimited by the 5th and the 95th percentiles. Experiments are computed for (a) Site 12, (b) Site 1, (c) Site 9, over the 

winter 2014-2015. 

4.2.2 Results of TB assimilation using the three frequencies  10 

The median of the resampled ensemble of SWE obtained with the DA of the three frequencies (SWEDA) is used to 

estimate the global performance of the DA scheme for SWE improvements. Performance is estimated for SWE up to 48 kg m-

2 (Sect. 3.4.2). Table 5 details the statistical performance of simulated SWEDA compared to measurements and to the original 

SWE Crocus simulations (SWECrocus) over the 12 studied sites from 2012 to 2016. To analyse the impact of the vegetation, 

results are separated according to the fraction of fcover (Table 5): moderate fcover (fcover<75%, 10 sites) and high fcover (fcover > 15 

75%, 2 sites) (see Table 2 for fcover site information). Figure 7 compares the SWEDA, SWECrocus and SWE measurements 

(SWEobs) from 2012 to 2016 for four sites with different fcover taken as an example: Site 5 (fcover = 31.5%), 10 (fcover = 61.8%), 

1 (fcover = 63.7%) and 9 (fcover = 84.0%). In this section, we first analyze the overall SWE improvements obtained with TB 

assimilation compared to original simulations. To have an idea of the impact of the DA scheme, the mean bias of SWE and 
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SWEmax retrieval obtained without and with assimilation are compared and the impact of the vegetation on the quality of the 

DA scheme is discussed.  

• Overall SWE improvements compared to original Crocus simulations 

The overall SWECrocus RMSE, bias and RPE are of 45.0 kg m-2, 23.6 kg m-2 and 22.1%, respectively (Table 5). In comparison, 

the overall SWEDA RMSE, bias and RPE are improved and equal to 43.1 kg m-2, 6.9 kg m-2 and 18.5%, respectively. The 5 

overall bias is reduced by 17 kg m-2 (72% of SWECrocus bias) with the DA scheme. The DA of the three frequencies thus helps 

to improve SWE estimates over Québec. Moreover, the correlation between SWEDA simulations with SWE measurements 

gives a coefficient r of 0.79 and an offset of 10, better than those obtained with SWECrocus simulations (r = 0.78, offset = 29). 

We analysed the number of cases with significant improvements for the total of 43 simulations studied (10 sites from 2012 to 

2016, Site 11 from 2015 to 2016 and Site 12 from 2014 to 2016) by considering a 5% threshold on the bias and RMSE 10 

differences before and after assimilation. The SWEDA bias is significantly reduced for 25 winters (58% of cases) compared to 

original SWE simulations. However, the RMSE is significantly improved for only 26% of simulations, and in 49% of cases, 

RMSEs are similar.  

• Evaluation of SWEmax performances 

The mean observed SWEmax is equal to 235.6 kg m-2 from 2012 to 2016, and the mean simulated SWEmax is equal to 278.3 kg 15 

m-2 and 264.6 kg m-2 without and with the assimilation, respectively. Compared to original SWE simulations, the DA scheme 

improves 62% of SWEmax simulations with an overall improvement of 13.6 kg m-2, corresponding to 9% of SWE measurements 

(Table 5). Such an uncertainty extended over the whole territory could have a strong impact, considering that 1 mm of SWE 

in the LG watershed could represent $1M in hydroelectric power production (Brown & Tapsoba, 2007). 

• SWE accuracy for sites according to the fcover 20 

The overall RPE obtained with the DA scheme is below 15% (RPE=14.6%) for sites with an fcover below 75% (Table 5), which 

is the accuracy required for hydrological applications (Larue et al., 2017). Hence, the accuracy of SWEDA retrievals, obtained 

without the use of any surface-based data, are very encouraging for hydrological needs in remote areas. In comparison, the 

GlobSnow-2 SWE product (Takala et al., 2011), which assimilates both TBs and in situ snow depths, has a SWE RMSE equal 

to 94.1 ± 20.3 kg m-2 over the same area in Québec (Larue et al., 2017), twice the uncertainty of SWEDA. Figures 7a and 7b 25 

(Sites 5 and 1) show that for a single site original SWECrocus simulation works well for some years but can be underestimated 

or overestimated over other years. The DA scheme allows a more stable solution when the overall fcover is under 75% (not the 

case for Site 9, for example).  

Nevertheless, even if the overall RMSE is improved, the DA scheme does not help to improve SWE estimates for sites with 

an fcover above 75% (RMSE of 58.8 kg m-2) compared to original SWE simulations (RMSE of 55.8 kg m-2). The presence of 30 

vegetation is a major source of uncertainty in TB TOA simulations. The emission of the trees is superimposed on the signal 

emitted by the underlying snowpack and increases the TB measured at the satellite level (Chang et al., 1996, Brown et al., 
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2003). At same time, the canopy also attenuates the surface emission toward the satellite. These contributions are complex to 

quantify since it depends not only on the tree fraction within the pixel but also on the tree species and states which 

emit/attenuate a different PMW signal depending on their biomass (liquid water content), volume and structure (stem, leaf, 

trunk) (Franklin, 1987). Also, the presence of trees modifies snow accumulation on the ground, depending on interception, 

shade and sublimation effects (Dutra et al., 2011, Wang et al., 2009), which increases the spatial variability of the snowpack 5 

within the same pixel. These interactions between the vegetation and the snowpack are not taken into account with Crocus and 

it might induce uncertainties due to model errors. Note that SWE sensors are mostly installed in clearings, which reduces this 

impact in comparisons against surface-based measurements. 

Kwon et al. (2016) used a similar snow radiance assimilation system to correct SD by updating the Community Land Model, 

version 4 (CLM4), snow/soil states and radiative transfer model (RTM) with the assimilation of the 19 and 37 GHz of AMSR-10 

E. Over North America, it produced significant improvements of SD for tundra type, but also produced degradations for taiga 

snow class and forest land cover (7.1% and 7.3% degradations, respectively). In the present study, the use of a multi-layer 

snowpack model makes it possible to well represent PMW emission from the snowpack with DMRT-ML, and to improve 

overall snowpack simulations with TB assimilation in boreal areas when the fcover is below 75%. Kwon et al. (2017) obtained 

better results for areas with a high fcover in comparison to their previous study (Kwon et al., 2016) over North America by using 15 

the vegetation parameter ω as a free variable in the DA scheme, instead of pre-calibrating it as we chose to do. This aspect is 

further discussed in Sect. 5.2.  

 

cm).  𝑺𝑾𝑬𝒐𝒃𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑺𝑾𝑬𝒔𝒊𝒎̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are the averaged observed and simulated SWE, respectively. 

 𝑆𝑊𝐸𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

SWECrocus 
SWEDA with the DA of the three 

frequencies 

RMSE 

(kg.m-2) 

Bias 

(kg.m-2) 

RPE 

(%) 
𝑆𝑊𝐸𝑠𝑖𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

RMSE 

(kg.m-2) 

Bias 

(kg.m-2) 

RPE 

(%) 
𝑆𝑊𝐸𝑠𝑖𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

fcover<75% 164.4 42.5 19.4 19.5 183.8 39.5 0.7 14.6 165.1 

fcover>75% 126.3 55.8 42.2 33.3 168.5 58.8 33.7 35.8 159.9 

Mean 157.3 45.0 23.7 22.1 181.0 43.1 6.9 18.5 164.2 

  

Table 5. Averaged SWE RMSE, bias and RPE (Eq. (12)) over the 12 studied sites from 2012 to 2016 for original SWE simulation 

20 (SWECrocus) and assimilated SWEDA. Statistical performances were estimated for SWEobs > 48 kg m-2 (snow depth higher than ~20 
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Figure 7. Evolution of SWE measurements (black points), original SWE simulations (red full line), and the median of the SWE 

ensemble obtained with the DA of the three frequencies (SWEDA) (blue dotted line). The gray envelope is the spread of the SWEDA 

ensemble (posterior estimates). Experiments are computed for (a) Site 5 (fcover = 31.5%), (b) Site 1 (fcover = 63.7%), (c) Site 9 (fcover = 5 
84%), d) Site 10 (fcover = 61.8%), from 2012 to 2016. 

5 Discussion 

In this section, we discuss a) the sensitivity of wet snow conditions for TB assimilation, b) the impact of using the forest 

parameter ω and snow microstructure (snow stickiness parameter τsnow) as free variables in the DA scheme, and c) the 

percentage of surface, vegetation and atmospheric contributions in the PMW signal measured by satellite sensors.  10 

 5.1 Wet snow conditions 

In wet snow conditions, water droplets act as emission sources (especially at frequencies above 30 GHz), and the snowpack 

becomes close to a black body (Brucker et al., 2011; Picard et al., 2013; Klehmet et al., 2013). The PMW observations are 

thus complex to use for SWE retrievals, especially at the end of the season before the spring snow melt when the SWE is 

maximal. Figure 8 illustrates the SWEDA obtained with the DA of the three frequencies applied over the whole winter and 15 

when the snow is dry only (LWC=0 kg m-2), for Site 3 (winter 2013/2014). SWE estimates are strongly deteriorated when TB 

assimilation is performed in wet snow conditions. For this example, the SWEDA RMSE is equal to 31.1 kg m-2 with a DA 
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performed over the dry snow period only and significantly increases to 70.2 kg m-2 by assimilating TBs over the whole winter 

(dry and wet snow conditions).  

Here we used the Liquid Water Content (LWC) simulated by the Crocus model to detect wet and dry snow. This variable is 

subject to model errors and is linked to the original atmospheric forcing data. Further studies are needed to automatically detect 

wet snow events by using direct satellite observations. Previous studies have shown the potential to use the gradient ratio 5 

(GR=TB,37–TB,19/TB,37+TB,19) to detect Rain-on-snow events in arctic areas (Langlois et al., 2016; Dolant et al., 2017) and this 

approach should be investigated for boreal forest areas in further work to improve the quality of the DA scheme for SWE 

improvements.  The use of active microwave observations is also a promising approach with a good spatial resolution (Roy et 

al., 2010). 

 10 

 

Figure 8. Evolutions of measured SWE (black points) for Site 3 from 2013 to 2014, original SWE Crocus simulation (red full line), 

and SWEDA obtained with a DA of the three frequencies applied for the entire winter (green dotted line) and when LWC=0 only 

(blue full line). The simulated total Liquid Water Content (LWC) in the snowpack (dotted gray lines) is also shown. 

5.2 Snow stickiness (τsnow) and forest parameter ω as free variables 15 

The quality of the PMW DA scheme could strongly depend upon the choice of the state variables. In this study, we chose to 

pre-calibrate forest and soil parameters and to use a constant snow stickiness parameter (τsnow) fixed at 0.17 (Larue et al., 2018). 

The forest parameter ω strongly affects the PMW emission from the vegetation, which can represent more than 60% of the 

signal measured by satellite sensors (see Sect. 5.3).  Kwon et al. (2017) has shown that the contribution of TB Veg to TB TOA was 

better represented by considering ω in the DA scheme, and improvements in the resulting SD were evident for the forest land-20 

cover type (about 5% with DMRT-ML). Table 6 shows the statistical performances of SWEDA obtained by considering ω and 

τsnow as free variables in our DA scheme (‘SWEDA, ω, τs’) over the 12 studied sites from 2012 to 2016. The ω parameter was 

perturbed with Gaussian noise, centered on 0.07 (as calibrated) with a standard deviation of 0.02 and bounded by 0.05 and 

0.12 (reasonable range of TB TOA RMSE values, Fig. 3). The snow stickiness parameter was perturbed by Gaussian noise, 

centered on 0.17, with a standard deviation of 0.15 and bounded by 0.1 and 0.46. These limits correspond to the range of τsnow 25 
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values extracted from Larue et al. (2018) over the same study area. The ensemble size was kept to 150 members in the DA 

experiment. 

 

 𝑆𝑊𝐸𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
SWEDA, ω, τs with the DA of the three frequencies 

RMSE (kg m-2) Bias (kg m-2) RPE (%) 𝑆𝑊𝐸𝑠𝑖𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

fcover<75% 164.4 47.2 -13.9 21.6 150.5 

fcover>75% 126.3 48.4 17.4 26.3 143.7 

Mean 157.3 47.4 -8.1 22.4 149.2 
 

The overall SWEDA, ω, τs RMSE, bias and RPE are equal to 47.4 kg m-2, -8.1 kg m-2 and 22.4%, respectively, very close to the 

statistical performances of the original SWECrocus simulations. The use of ω and τsnow as free variables in the DA scheme does 

not help to improve SWECrocus simulations for sites with an fcover below 75%, but the bias is significantly reduced for sites with 

an fcover above 75% (17.4 kg m-2, or 11% of SWE measurements). In addition, the simulated SWEmax is improved for 86% of 10 

the 43 simulations (37 cases), with a reduction of the SWEmax bias of 36.2 kg m-2 (23% of SWE measurements) compared to 

the original SWECrocus simulation.  

We chose to use pre-calibrated parameters because the parameters ω and τsnow were not measurable and could not be directly 

validated. Furthermore, if we add parameters to the state variables, a larger ensemble size in the DA scheme would be needed 

to improve the representativeness of TB uncertainties and to ensure the solution’s stability (or at least to prevent a degeneracy 15 

problem). The ensemble size was kept to 150 here but this DA experiment should produce improved results with a larger 

ensemble size. Nevertheless, this would require a significant computational effort. This study is a preliminary step of a PMW 

DA implementation for operational hydrological applications, so there was a need to limit computing time. These results 

suggest that the developed approach using pre-calibrated ω and τsnow parameters helps to improve the retrievals for sites with 

an fcover below 75%, and the use of ω and τsnow parameters as free variables in the DA scheme should be investigated in further 20 

work for sites with more than 75% forest cover. 

 5.3 Land cover contributions within the simulated TB TOA 

To properly assimilate PMW satellite observations, all contributions that affect the observed signal need to be well identified 

and quantified. The estimation of TB TOA (see Eq. (5) and (6)) can be written as the sum of the PMW contributions of the open 

surface (TB surf), vegetation (TB veg) and atmosphere (TB atm) according to the fraction of forest (fcover, estimated with the LAI as 25 

in Eq. (2) and (3)) and open area (1 - fcover) with the Eq. (13), (14) and (15) as, 

𝑇𝐵 𝑣𝑒𝑔 = 𝑓𝑐𝑜𝑣𝑒𝑟 . [(1 − 𝜔). (1 − 𝛾𝜈). 𝑇 𝑣𝑒𝑔 + 𝛾𝜈 . (1 − 𝑒 𝑠𝑢𝑟𝑓). (1 − 𝜔). (1 − 𝛾𝜈). 𝑇𝑣𝑒𝑔]. 𝛾𝑎𝑡𝑚                  (13) 

𝑇𝐵 𝑠𝑢𝑟𝑓 = 𝑓𝑐𝑜𝑣𝑒𝑟 . [𝛾𝜈. 𝑒 𝑠𝑢𝑟𝑓 . 𝑇𝑠𝑢𝑟𝑓]. 𝛾𝑎𝑡𝑚 + (1 − 𝑓𝑐𝑜𝑣𝑒𝑟). [𝑒 𝑠𝑢𝑟𝑓 . 𝑇𝑠𝑢𝑟𝑓]. 𝛾𝑎𝑡𝑚             (14) 

Table 6. Same as Table 5 but using the forest parameter ω and the snow stickiness parameter (τsnow) as free variables in the DA 

5 scheme to improve SWE retrievals (SWEDA, ω, τs). 
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𝑇𝐵 𝑎𝑡𝑚 = 𝑓𝑐𝑜𝑣𝑒𝑟 . ([(1 − 𝑒 𝑠𝑢𝑟𝑓). 𝛾𝜈
2

. 𝑇𝐵 𝑎𝑡𝑚↓ + (1 − 𝛾𝜈). 𝜔. 𝑇𝐵 𝑎𝑡𝑚↓] . 𝛾𝑎𝑡𝑚 + 𝑇𝐵 𝑎𝑡𝑚↑) + (1 − 𝑓𝑐𝑜𝑣𝑒𝑟). ((1 −

𝑒 𝑠𝑢𝑟𝑓). 𝑇𝐵 𝑎𝑡𝑚↓. 𝛾𝑎𝑡𝑚 + 𝑇𝐵 𝑎𝑡𝑚↑)                      (15) 

Figure 9 illustrates the percentage of each contribution at 11, 19 and 37 GHz in V-pol from 2012 to 2016, for the summer and 

for the winter periods (defined when a snowpack is detected) for Site 12 (fcover of 24.2%), Site 1 (fcover of 63.7%) and Site 9 

(fcover of 84.0%). The percentages of each contribution are similar at 11 and 19 GHz. The contributions from the atmosphere 5 

are weak. As expected for all frequencies, the surface contributions increase for the winter period, while the vegetation 

contributions decrease as the LAI decreases, especially at 37 GHz. For Site 12, the surface contributions represent more than 

80% of the PMW signal in winter when the vegetation contributions represent less than 10% of the PMW signal (same 

magnitude as atmosphere contributions). For Site 1, the surface and the vegetation contributions are similar in winter (40-55%) 

whereas the vegetation contributions were more than 60% of the PMW signal in summer. For Site 9, the vegetation 10 

contributions remain the main contribution to the PMW signal in comparison to the surface contributions, even in winter (50-

70% of the PMW signal for 37-10 GHz). In this dense boreal forest area, the measured snowpack emission represents less than 

30% of the measured signal and SWE improvements using only TB observations is challenging. This high vegetation 

contribution (emission and attenuation) explain why the developed DA scheme does not succeed to significantly improve SWE 

estimates for these sites with a fcover up to 75%. 15 

 

Figure 9. Percentage of surface (black), vegetation (dark gray) and atmosphere (light gray) contributions to the simulated PMW 

signal at the top of the atmosphere at the three frequencies 11 (top), 19 (middle) and 37 (bottom) GHz. ID12, ID1 and ID9 are site 

12 (fcover of 24.2%), 1 (fcover of 63.7%) and 9 (fcover of 84.0%), respectively. Summer and winter periods are defined when snowpack is 

observed or not. 20 
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6 Summary and conclusion 

An ensemble data assimilation (DA) scheme was implemented in a calibrated chain of models (Crocus/DMRT-ML, soil, 

vegetation and atmosphere radiative transfer models) to improve SWE estimates by updating forcing data and snowpack states 

with the assimilation of AMSR-2 satellite observations. The developed approach does not use any surface-based data and was 5 

tested over a boreal area in Québec (Eastern Canada). The proposed DA scheme is a particle filter with a resampled SIR 

algorithm, using an inflation technique of the R matrix to avoid degeneracy problems. The multi-layer snowpack model Crocus, 

coupled to the surface land model ISBA, was used to simulate the evolution of the snowpack. The DMRT-ML, the (ω-τopt) 

model, an atmospheric model and the WM99 radiative transfer model were calibrated to simulate the PMW contributions from 

the snowpack, the vegetation and the soil, respectively, at the top of the atmosphere.  The DA scheme was performed over 12 10 

sites from 2012 to 2016, only in the presence of dry snow. Ice lenses were detected and integrated in the snowpack by using a 

thresholding approach on the polarization ratio at 19 GHz. The study shows: 

1- TB TOA can be well simulated with the developed chain of models. By calibrating soil and forest parameters (ω=0.07 

and σs=0.2 cm), the overall TB TOA RMSE (all frequencies) is equal to 18.0 K from 2012 to 2016 over the winter 

period. This RMSE is similar to the overall RMSE estimated for the τsnow-calibrated DMRT-ML driven by in situ 15 

measurements in an open area (19.9 K compared to surface-based radiometric measurements in Québec (Larue et al., 

2018)). 

2- The assimilation of TBs at 11, 19 and 37 GHz (V-pol) improves the SWE retrievals compared to the assimilation of 

ΔTB 19-37 only (sensitive to snowpack depth) or to the assimilation of both ΔTB 19-37 and ΔTB 11-19. The SWE RMSE of 

posterior estimates is reduced by 45.6% over the whole winter compared to the SWE RMSE of prior estimates (open 20 

loop runs).  

3- By using calibrated ω and τsnow parameters in the DA scheme, the overall bias (for 12 sites from 2012 to 2016) of the 

original SWECrocus simulations is significantly reduced by assimilating TBs at 11, 19 and 37 GHz (from 22.1 kg m-2 to 

6.9 kg m-2). The bias on SWEmax is reduced by 13.6 kg m-2 (9% of SWE measurements). The overall RPE goes from 

22.1% to 18.5%, which is close to the range of accuracy needed for hydrological applications (SWE RPE < 15%). 25 

This accuracy is achieved with the TB assimilation for sites with a fcover below 75%. 

 

Even with the difficulties associated with quantifying all the different factors that contribute to the PMW signal measured by 

satellite sensors in remote boreal areas (canopy, ice crust, frozen ground / unfrozen, presence of lakes, moisture in the snow, 

topography, etc.) (Kelly et al., 2003, Koenig & Forster, 2004), and even when vegetation contributions are 50% of the PMW 30 

signal, the implementation of a DA scheme in a well-calibrated chain of models allows to reduce SWE uncertainties without 

using any surface-based data. This assimilation scheme can be easily implemented in an operational system using real satellite-
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borne observations, despite the relatively significant computing time required. This research opens the way for global 

applications to obtain more accurate SWE estimates over large and remote areas where few meteorological weather stations 

are present. 

 

Data availability. The daily SWE data provided by Hydro-Québec are used for hydrological purposes and are not available to 5 

the public due to legal constraints on the data’s availability. The SWE data, SD data and field campaign measurements provided 

by the University of Sherbrooke will soon be available on the GRIMP snow group website http://www.grimp.ca/data/. 

Meteorological GEM data are freely available on the Government of Canada’s website 

https://weather.gc.ca/grib/grib2_reg_10km_e.html. Other data used are listed in the references. 

 10 
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Appendix A: Online adjustment of the observation error covariance matrix R 

Online adjustment of covariance matrices in data assimilation is quite a common approach with the Ensemble Kalman filter 

(Dee, 1995; Miyoshi, 2001, Brankart et al., 2010, 2011) but not with the particle filter. However, in many implementations of 

the particle filter, the measurement pdf is considered Gaussian, so that the particle weights are computed using the observation 

error covariance matrix R. This matrix can therefore also be subject to adjustment in the context of the particle filter. Online 20 

adjustment can be and is often performed by tuning a simple inflation of the initial covariance matrix. This is the approach 

chosen here. 

Noting δi = y−h(xi) the innovation for particle i, the weight of this particle is  

𝑤𝑒𝑖̃ =  
𝑤𝑒𝑖

∑ 𝑤𝑒𝑗𝑗
            (A1) 

where  25 

𝑤𝑒𝑖 = exp (−
1

2
𝛿𝑖

𝑇𝑅−1𝛿𝑖)            (A2) 

An inflation of matrix R by a factor 1/α (larger than 1) can be interpreted as an exponent α (smaller than 1) to wei. Because the 

weights ˜ wi are nonlinear functions of R, inflating R tends to flatten their distribution. Online adjustment consists in finding a 

value for α that flattens the distribution of weights to the point where Nkeep particles are selected with certainty, Nkeep being a 

number to be prescribed. The number Nkeep being fixed, if the resampling step is performed using Arakawa’s procedure 30 

(Arakawa, 1996), the weight of the Nkeep-th particle to be selected, 𝑤𝑒̃𝑘𝑒𝑒𝑝, must become equal to 𝑤𝑒̃𝑟𝑒𝑓= 1/Nkeep. Consequently, 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-95
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 13 March 2018
c© Author(s) 2018. CC BY 4.0 License.



30 

 

𝑤𝑒̃𝑘𝑒𝑒𝑝 =  
(𝑤𝑒𝑘𝑒𝑒𝑝)

𝛼

∑ (𝑤𝑒𝑗)
𝛼

𝑗
= 𝑤𝑒̃𝑟𝑒𝑓          (A3) 

or, written differently after taking the logarithm: 

𝛼 = (log (𝑤𝑒̃𝑟𝑒𝑓) + 𝑙𝑜𝑔(∑ (𝑤𝑒𝑗)
𝛼

𝑖 )) /𝑙𝑜𝑔(𝑤𝑒𝑘𝑒𝑒𝑝)        (A4) 

This equation for α is not solvable analytically. Instead, we find α after the convergence of the series: 

𝛼𝑛 = (log(𝑤𝑒̃𝑟𝑒𝑓) + 𝑙𝑜𝑔(∑ 𝑤𝑒𝑗
𝛼𝑛−1

𝑖 )) /log (𝑤𝑒𝑘𝑒𝑒𝑝)       (A5) 5 

The result of this adjustment is illustrated in Figure A1. The blue dots show the first 20 weights of a sorted distribution for an 

ensemble of 50 particles strongly prone to degeneracy: only 4 particles have a weight larger than 1/50 = 0.02. The minimum 

number of particles to be selected is fixed to Nkeep = 10. After the adjustment procedure, the identified inflation factor for matrix 

R is 3.6 (α = 0.277) and the weight 𝑤𝑒𝑘𝑒𝑒𝑝 of the 10th particle is exactly equal to 0.02.  

Obviously, this procedure is used only if the number of selected particles is below the Nkeep threshold with the initial weights. 10 

 

Figure A1. Weight distribution of the first 20 weights of a sorted distribution for an ensemble of 50 particles: distribution before the 

adjustment (blue dotted points), showing a degeneracy problem, and distribution after the adjustment procedure (red dotted points), 

where weight distribution is ‘flattened’ and significant weights are distributed around Nkeep particles (10 particles for this example).  
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